4.7 Article

Neural network based coupled diabatic potential energy surfaces for reactive scattering

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 147, 期 8, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4997995

关键词

-

资金

  1. Deutsche Forschungsgemeinschaft

向作者/读者索取更多资源

An approach for the construction of vibronically coupled potential energy surfaces describing reactive collisions is proposed. The scheme utilizes neural networks to obtain the elements of the diabatic potential energy matrix. The training of the neural network employs a diabatization by the Ansatz approach and is solely based on adiabatic electronic energies. Furthermore, no system-specific symmetry consideration is required. As the first example, the H-2 + Cl -> H + HCl reaction, which shows a conical intersection in the entrance channel, is studied. The capability of the approach to accurately reproduce the adiabatic reference energies is investigated. The accuracy of the fit is found to crucially depend on the number of data points as well as the size of the neural network. 5000 data points and a neural network with two hidden layers and 40 neurons in each layer result in a fit with a root mean square error below 1 meV for the relevant geometries. The coupled diabatic potential energies are found to vary smoothly with the coordinates, but the conical intersection is erroneously represented as a very weakly avoided crossing. This shortcoming can be avoided if symmetry constraints for the coupling potential are incorporated into the neural network design. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据