4.7 Article

A critical evaluation of perturbation theories by Monte Carlo simulation of the first four perturbation terms in a Helmholtz energy expansion for the Lennard-Jones fluid

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 147, 期 1, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4991008

关键词

-

资金

  1. German Research Foundation (DFG) within the Cluster of Excellence in Simulation Technology at the University of Stuttgart [EXC 310/1]

向作者/读者索取更多资源

The Helmholtz energy of a fluid interacting by a Lennard-Jones pair potential is expanded in a perturbation series. Both the methods of Barker-Henderson (BH) and ofWeeks-Chandler-Andersen (WCA) are evaluated for the division of the intermolecular potential into reference and perturbation parts. The first four perturbation terms are evaluated for various densities and temperatures (in the ranges rho* = 0 - 1.5 and T* = 0.5 - 12) using Monte Carlo simulations in the canonical ensemble. The simulation results are used to test several approximate theoretical methods for describing perturbation terms or for developing an approximate infinite order perturbation series. Additionally, the simulations serve as a basis for developing fully analytical third order BH and WCA perturbation theories. The development of analytical theories allows (1) a careful comparison between the BH and WCA formalisms, and (2) a systematic examination of the effect of higher-order perturbation terms on calculated thermodynamic properties of fluids. Properties included in the comparison are supercritical thermodynamic properties (pressure, internal energy, and chemical potential), vapor-liquid phase equilibria, second virial coefficients, and heat capacities. For all properties studied, we find a systematically improved description upon using a higher-order perturbation theory. A result of particular relevance is that a third order perturbation theory is capable of providing a quantitative description of second virial coefficients to temperatures as low as the triple-point of the Lennard-Jones fluid. We find no reason to prefer the WCA formalism over the BH formalism. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据