4.7 Article

A coarse-grain molecular dynamics study of oil-water interfaces in the presence of silica nanoparticles and nonionic surfactants

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 146, 期 20, 页码 -

出版社

AIP Publishing
DOI: 10.1063/1.4984073

关键词

-

资金

  1. Council of Scientific and Industrial Research (CSIR), Government of India
  2. Science and Engineering Research Board, Department of Science and Technology (SERB-DST), Government of India

向作者/读者索取更多资源

In this work, we have studied the effect of hydrophilic silica nanoparticles (NPs), in the presence of nonionic surfactants (Triethylene glycol monododecyl ether and Tween 20), on the oil-water (n-octane-water, n-dodecane-water and n-hexadecane-water) interfacial tensions (IFTs) at 300 K, using coarse-grained molecular dynamics simulations based on the MARTINI force field. Simulation results indicate that silica NPs solely do not affect the IFT. However, the silica NPs may or may not increase the IFT of oil-water containing nonionic surfactant, depending on the tendency of the surfactant to adsorb on the surface of NPs. The adsorption occurs due to the formation of hydrogen bonds, and adsorption increases with a decrease in pH, as seen in experimental studies. In this work, we found that the oil-water IFT increases with an increasing amount of adsorption of the surfactant on NPs. At a fixed amount of adsorption of the surfactant on NPs, the IFT behavior is indifferent to the change in concentration of NPs. However, the IFT decreases with an increase in surfactant concentration. We present a detailed analysis of the density profile and intrinsic width of the interface. The IFT behavior is found to correlate extremely well with the intrinsic width of the interface. The current study provides an explanation for the increase in IFT observed in a recent experiment [N. R. Biswal et al., J. Phys. Chem. B 120, 7265-7274 (2016)] for various types of NPs and nonionic surfactant systems. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据