4.7 Article

Surface chemistry of group 11 atomic layer deposition precursors on silica using solid-state nuclear magnetic resonance spectroscopy

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 146, 期 5, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4968021

关键词

-

向作者/读者索取更多资源

The use of chemical vapour deposition (CVD) and atomic layer deposition (ALD) as thin film deposition techniques has had a major impact on a number of fields. The deposition of pure, uniform, conformal thin films requires very specific vapour-solid reactivity that is largely unknown for the majority of ALD and CVD precursors. This work examines the initial chemisorption of several thin film vapour deposition precursors on high surface area silica (HSAS) using C-13, P-31, and quantitative Si-29 nuclear magnetic resonance spectroscopy (NMR). Two copper metal precursors, ylidene copper(I) hexamethyldisilazide (2), and one gold metal precursor, trimethylphosphine gold(III) trimethyl (3), are examined. Compounds 1 and 2 were found to chemisorb at the hydroxyl surface-reactive sites to form a parallel to-O-Cu-NHC surface species and fully methylated silicon (parallel to-SiMe3, due to reactivity of the hexamethyldisilazane (HMDS) ligand on the precursor) at 150 degrees C and 250 degrees C. From quantitative Si-29 solid-state NMR (SS-NMR) spectroscopy measurements, it was found that HMDS preferentially reacts at geminal disilanol surface sites while the copper surface species preferentially chemisorbed to lone silanol surface species. Additionally, the overall coverage was strongly dependent on temperature, with higher overall coverage of 1 at higher temperature but lower overall coverage of 2 at higher temperature. The chemisorption of 3 was found to produce a number of interesting surface species on HSAS. Gold(III) trimethylphosphine, reduced gold phosphine, methylated phosphoxides, and graphitic carbon were all observed as surface species. The overall coverage of 3 on HSAS was only about 10% at 100 degrees C and, like the copper compounds, had a preference for lone silanol surface reactive sites. The overall coverage and chemisorbed surface species have implications to the overall growth rate and purity of metal films grown with these precursors. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据