4.7 Article

Probing photoisomerization processes by means of multi-dimensional electronic spectroscopy: The multi-state quantum hierarchical Fokker-Planck equation approach

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 147, 期 1, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4989537

关键词

-

资金

  1. Japan Society for the Promotion of Science (JSPS) [A26248005]
  2. JSPS
  3. [16J10099]
  4. Grants-in-Aid for Scientific Research [16J10099, 26248005] Funding Source: KAKEN

向作者/读者索取更多资源

Photoisomerization in a system with multiple electronic states and anharmonic potential surfaces in a dissipative environment is investigated using a rigorous numerical method employing quantum hierarchical Fokker-Planck equations (QHFPEs) for multi-state systems. We have developed a computer code incorporating QHFPE for general-purpose computing on graphics processing units that can treat multi-state systems in phase space with any strength of diabatic coupling of electronic states under non-perturbative and non-Markovian system-bath interactions. This approach facilitates the calculation of both linear and nonlinear spectra. We computed Wigner distributions for excited, ground, and coherent states. We then investigated excited state dynamics involving transitions among these states by analyzing linear absorption and transient absorption processes and multi-dimensional electronic spectra with various values of heat bath parameters. Our results provide predictions for spectroscopic measurements of photoisomerization dynamics. The motion of excitation and ground state wavepackets and their coherence involved in the photoisomerization were observed as the profiles of positive and negative peaks of two-dimensional spectra. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据