4.7 Article

Low rank factorization of the Coulomb integrals for periodic coupled cluster theory

期刊

JOURNAL OF CHEMICAL PHYSICS
卷 146, 期 12, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4977994

关键词

-

向作者/读者索取更多资源

We study a tensor hypercontraction decomposition of the Coulomb integrals of periodic systems where the integrals are factorized into a contraction of six matrices of which only two are distinct. We find that the Coulomb integrals can be well approximated in this form already with small matrices compared to the number of real space grid points. The cost of computing the matrices scales as O(N-4) using a regularized form of the alternating least squares algorithm. The studied factorization of the Coulomb integrals can be exploited to reduce the scaling of the computational cost of expensive tensor contractions appearing in the amplitude equations of coupled cluster methods with respect to system size. We apply the developed methodologies to calculate the adsorption energy of a single water molecule on a hexagonal boron nitride monolayer in a plane wave basis set and periodic boundary conditions. (C) 2017 Author (s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据