4.7 Article

Probing the Binding Pathway of BRACO19 to a Parallel-Stranded Human Telomeric G-Quadruplex Using Molecular Dynamics Binding Simulation with AMBER DNA OL15 and Ligand GAFF2 Force Fields

期刊

JOURNAL OF CHEMICAL INFORMATION AND MODELING
卷 57, 期 11, 页码 2846-2864

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acs.jcim.7b00287

关键词

-

资金

  1. Rowan Startup
  2. SEED Grants
  3. National Science Foundation [NSF ACI-1429467, XSEDE MCB160004/1600164/1600173/170088]
  4. Office of Advanced Cyberinfrastructure (OAC)
  5. Direct For Computer & Info Scie & Enginr [1429467] Funding Source: National Science Foundation

向作者/读者索取更多资源

Human telomeric DNA G-quadruplex has been identified as a good therapeutic target in cancer treatment. quadruplex-specific ligands that stabilize the G-quadruplex have great potential to be developed as anticancer agents. Two crystal structures (an apo form of parallel stranded human telomeric quadruplex and its holo form in complex with BRACO19, a potent G-quadruplex ligand) have been solved, yet the binding mechanism and pathway remain elusive. In this study, we simulated the binding of a free BRACO19 molecule to the apo form of the G-quadruplex using the latest AMBER DNA (OL15) and ligand (GAFF2) force fields. Three binding modes have been identified: top stacking, bottom intercalation, and groove binding. Bottom intercalation (51% of the population) resembles the bottom binding pose in the complex crystal structure very well. The groove binding mode is less stable than the bottom binding mode and is likely to be an intermediate state leading to the bottom binding mode. A flip insertion mechanism was observed in the bottom intercalation mode, during which flipping of the bases outward makes space for ligand insertion, after which the bases flip back to increase the stability of the complex. In addition to reproducing the base-flipping behavior for some loop residues upon ligand binding, the direct alignment type of the ATAT-tetrad was observed in our simulations for the first time. These successes provide initial support for using this combination of the OL15 and GAFF2 force fields to study quadruplex ligand interactions.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据