4.6 Review

Recent advances in fast-scan cyclic voltammetry

期刊

ANALYST
卷 145, 期 4, 页码 1087-1102

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9an01925a

关键词

-

资金

  1. National Institute of Health (NIH) [R01 MH085159, R01 EB026497]

向作者/读者索取更多资源

Fast-scan cyclic voltammetry (FSCV) at carbon-fiber microelectrodes (CFMEs) is a versatile electrochemical technique to probe neurochemical dynamics in vivo. Progress in FSCV methodology continues to address analytical challenges arising from biological needs to measure low concentrations of neurotransmitters at specific sites. This review summarizes recent advances in FSCV method development in three areas: (1) waveform optimization, (2) electrode development, and (3) data analysis. First, FSCV waveform parameters such as holding potential, switching potential, and scan rate have been optimized to monitor new neurochemicals. The new waveform shapes introduce better selectivity toward specific molecules such as serotonin, histamine, hydrogen peroxide, octopamine, adenosine, guanosine, and neuropeptides. Second, CFMEs have been modified with nanomaterials such as carbon nanotubes or replaced with conducting polymers to enhance sensitivity, selectivity, and antifouling properties. Different geometries can be obtained by 3D-printing, manufacturing arrays, or fabricating carbon nanopipettes. Third, data analysis is important to sort through the thousands of CVs obtained. Recent developments in data analysis include preprocessing by digital filtering, principal components analysis for distinguishing analytes, and developing automated algorithms to detect peaks. Future challenges include multisite measurements, machine learning, and integration with other techniques. Advances in FSCV will accelerate research in neurochemistry to answer new biological questions about dynamics of signaling in the brain.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据