4.7 Article

Unexpected long-range transport of glyoxal and formaldehyde observed from the Copernicus Sentinel-5 Precursor satellite during the 2018 Canadian wildfires

期刊

ATMOSPHERIC CHEMISTRY AND PHYSICS
卷 20, 期 4, 页码 2057-2072

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-20-2057-2020

关键词

-

资金

  1. University of Bremen
  2. DFG

向作者/读者索取更多资源

Glyoxal (CHOCHO) and formaldehyde (HCHO) are intermediate products in the tropospheric oxidation of the majority of volatile organic compounds (VOCs). CHOHO is also a precursor of secondary organic aerosol (SOA) in the atmosphere. CHOCHO and HCHO are released from biogenic, anthropogenic, and pyrogenic sources. CHOCHO and HCHO tropospheric lifetimes are typically considered to be short during the daytime at mid-latitudes (e.g. several hours), as they are rapidly removed from the atmosphere by their photolysis, oxidation by OH, and uptake on particles or deposition. At night and at high latitudes, tropospheric lifetimes increase to many hours or even days. Previous studies demonstrated that CHOCHO and HCHO vertical column densities (VCDs) are well retrieved from space-borne observations using differential optical absorption spectroscopy (DOAS). In this study, we present CHOCHO and HCHO VCDs retrieved from measurements by TROPOMI (TROPO-spheric Monitoring Instrument), launched on the Sentinel-5 Precursor (S5P) platform in October 2017. We observe strongly elevated amounts of CHOCHO and HCHO during the 2018 fire season in British Columbia, Canada, where a large number of fires occurred in August. CHOCHO and HCHO plumes from individual fire hot spots are observed in air masses travelling over distances of up to 1500 km, i.e. much longer than expected for the relatively short tropospheric lifetime expected for CHOCHO and HCHO. Comparison with simulations by the particle dispersion model FLEXPART (FLEXible PARTicle dispersion model) indicates that effective lifetimes of 20 h and more are needed to explain the observations of CHOCHO and HCHO if they decay in an effective first-order process. FLEXPART used in the study calculates accurately the transport. In addition an exponential decay, in our case assumed to be photochemical, of a species along the trajectory is added. We have used this simple approach to test our assumption that CHOCHO and HCHO are created in the fires and then decay at a constant rate in the plume as it is transported. This is clearly not the case and we infer that CHOCHO and HCHO are either efficiently recycled during transport or continuously formed from the oxidation of longer-lived precursors present in the plume, or possibly a mixture of both. We consider the best explanation of the observed CHOCHO and HCHO VCD in the plumes of the fire is that they are produced by oxidation of longer-lived precursors, which were also released by the fire and present in the plume.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据