4.7 Article

Comparison of Cross-Linked Branched and Linear Poly(ethylene imine) Microgel Microstructures and Their Impact in Antimicrobial Behavior, Copper Chelation, and Carbon Dioxide Capture

期刊

ACS APPLIED POLYMER MATERIALS
卷 2, 期 2, 页码 826-836

出版社

AMER CHEMICAL SOC
DOI: 10.1021/acsapm.9b01101

关键词

poly(ethylene imine); microgels; linear PEI (LPEI); branched PEI (BPEI); carbon dioxide capture; copper chelation

资金

  1. Tulane University
  2. Louisiana Board of Regents
  3. Smart Materials Design, Analysis, and Processing consortium (SMATDAP) - National Science Foundation [IIA1430280]

向作者/读者索取更多资源

Poly(ethylene imine) (PEI) is a cationic polymer that is commercially available in linear PEI (LPEI) and branched PEI (BPEI) architectures for both biological and environmental applications. When the LPEI or BPEI is coupled with divinyl sulfone, cross-linked PEI is formed, and it has been researched for its same robust properties as traditional PEI, but it has a rigid, insoluble structure. Herein, we present the first direct comparison of cross-linked linear PEI microgels and branched PEI microgels (LPM and BPM, respectively) for both their intrinsic characteristics, such as morphology, surface charge, and surface chemistry, and their applications in antimicrobial activity, copper chelation, and CO2 capture. The Cu(II) adsorption capacity of the LPMs is larger than their branched counterparts, and their performance is comparable to that of similar materials with a maximum adsorption capacity of 86.8 mg/g. LPM and BPM shows no significant inhibition in bacterial growth compared to a positive control (culture inoculated with bacteria and no PEI treatment) while the PEI precursors all show complete inhibition of growth. The LPMs were found to be good CO2 adsorbents compared to the BPMs, which adsorbed and desorbed CO2 immediately. The best performing LPM has an adsorption capacity of 4.34 mmol/g at 1 bar CO2. In summary, we have described the first pro-environmental PEI gels, which function as a well-performing dry CO2 adsorbent and copper-chelating agent that is benign to bacteria.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据