4.7 Article

Osteogenic differentiation potential of mesenchymal stem cells cultured on nanofibrous scaffold improved in the presence of pulsed electromagnetic field

期刊

JOURNAL OF CELLULAR PHYSIOLOGY
卷 233, 期 2, 页码 1061-1070

出版社

WILEY
DOI: 10.1002/jcp.25962

关键词

adipose-derived mesenchymal stem cells; electromagnetic field; extremely low frequency; osteogenesis; Poly(caprolactone)

资金

  1. Shahid Beheshti University of Medical Sciences [9740]

向作者/读者索取更多资源

Nowadays, tissue engineering by using stem cells in combination with scaffolds and bioactive molecules has made significant contributions to the regeneration of damaged bone tissues. Since the usage of bioactive molecules including, growth factors to induce differentiation is safety limited in clinical applications, and it has also been previously observed that extremely low frequency pulsed electromagnetic fields (PEMF) can be effective in the enhancement of proliferation rate and osteogenic differentiation of stem cells, the aim of this study was investigating the osteoinductive potential of PEMF in combination with Poly(caprolactone) (PCL) nanofibrous scaffold. To achieve this aim, Adipose-derived mesenchymal stem cells (ADSCs) isolated and characterized and then osteogenic differentiation of them was investigated after culturing on the surface of PCL scaffold under treatments of PEMF, PEMF plus osteogenic medium (OM) and OM. Analysis of common osteogenic markers such as Alizarin red staining, ALP activity, calcium content and four important bone-related genes in days of 7, 14, and 21 confirmed that the effects of PEMF on the osteogenic differentiation of ADSCs are very similar to the effects of osteogenic medium. Thus, regarding the immunological concerns about the application of bioactive molecules for tissue engineering, PEMF could be a good alternative for osteogenic medium. Although, results were showed a synergetic effect for simultaneous application of PEMF and PCL scaffold in the osteogenesis process of ADSCs. Taking together, ADSCs-seeded PCL nanofibrous scaffold in combination with PEMF could be a great option for use in bone tissue engineering applications.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据