4.7 Article

Targeting P-glycoprotein and SORCIN: Dihydromyricetin strengthens anti-proliferative efficiency of adriamycin via MAPK/ERK and Ca2+-mediated apoptosis pathways in MCF-7/ADR and K562/ADR

期刊

JOURNAL OF CELLULAR PHYSIOLOGY
卷 233, 期 4, 页码 3066-3079

出版社

WILEY
DOI: 10.1002/jcp.26087

关键词

adriamycin; dihydromyricetin; multidrug resistance; P-glycoprotein; SORCIN

资金

  1. National Natural Science Foundation of China [81473280]

向作者/读者索取更多资源

Recently, a new target Ca2+-binding protein SORCIN was reported to participate in multidrug resistance (MDR) in cancer. Here we aim to investigate whether dihydromyricetin (DMY), a dihydroflavonol compound with anti-inflamatory, anti-oxidant, anti-bacterial and anti-tumor actions, reverses MDR in MCF-7/ADR and K562/ADR and to elucidate its potential molecular mechanism. DMY enhanced cytotoxicity of adriamycin (ADR) by downregulating MDR1 mRNA and P-gp expression through MAPK/ERK pathway and also inhibiting the function of P-gp significantly. Meanwhile, DMY decreased mRNA and protein expression of SORCIN, which resulted in elevating intracellular free Ca2+. Finally, we investigated co-administration ADR with DMY remarkably increased ADR-induced apoptosis. Further study showed DMY elevated ROS levels and caspase-12 protein expression, which signal apoptosis in endoplasmic reticulum. At the same time, proteins related to mitochondrial apoptosis were also changed such as Bcl-2, Bax, caspase-3, caspase-9, and PARP. Finally, nude mice model also demonstrated that DMY strengthened anti-tumor activity of ADR in vivo. In conclusion, DMY reverses MDR by downregulating P-gp, SORCIN expression and increasing free Ca2+, as well as, inducing apoptosis in MCF-7/ADR and K562/ADR. These fundamental findings provide evidence for further clinical research in application of DMY as an assistant agent in the treatment of cancer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据