4.7 Article

Mediator-free direct Z-scheme photocatalytic system: BiVO4/g-C3N4 organic-inorganic hybrid photocatalyst with highly efficient visible-light-induced photocatalytic activity

期刊

DALTON TRANSACTIONS
卷 44, 期 9, 页码 4297-4307

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4dt03905j

关键词

-

资金

  1. National Natural Science Foundations of China [51302251, 51172245]
  2. Fundamental Research Funds for the Central Universities [2652013052]
  3. National High Technology Research and Development Program (863 Program) of China [2012AA06A109]

向作者/读者索取更多资源

We disclose the fabrication of a mediator-free direct Z-scheme photocatalyst system BiVO4/g-C3N4 using a mixed-calcination method based on the more reliable interfacial interaction. The facet coupling occurred between the g-C3N4 (002) and BiVO4 (121), and it was revealed by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and transmission electron microscope (TEM). The crystal structure and optical properties of the as-prepared samples have also been characterized by Fourier-transform infrared (FTIR), scanning electron microscopy (SEM) and UV-vis diffuse reflectance spectra (DRS) in details. The photocatalytic experiments indicated that the BiVO4/g-C3N4 composite photocatalysts display a significantly enhanced photocatalytic activity pertaining to RhB degradation and photocurrent generation (PC) compared to the pristine BiVO4 and g-C3N4. This remarkably improved photocatalytic performance should be attributed to the fabrication of a direct Z-scheme system of BiVO4/g-C3N4, which can result in a more efficient separation of photoinduced charge carriers than band-band transfer, thus endowing it with the much more powerful oxidation and reduction capability, as confirmed by the photoluminescence (PL) spectra and electrochemical impedance spectra (EIS). The Z-scheme mechanism of BiVO4/g-C3N4 heterostructure was verified by a series of combined techniques, including the active species trapping experiments, NBT transformation and terephthalic acid photoluminescence probing technique (TA-PL) over BiVO4/g-C3N4 composites and the pristine samples. The present work not only furthered the understanding of mediator-free Z-scheme photocatalysis, but also shed new light on the design of heterostructural photocatalysts with high-performance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据