4.7 Article

Gravitational waves or deconfined quarks: What causes the premature collapse of neutron stars born in short gamma-ray bursts?

期刊

PHYSICAL REVIEW D
卷 101, 期 6, 页码 -

出版社

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevD.101.063021

关键词

-

资金

  1. Australian Postgraduate Award
  2. Australian Research Council [FT160100112]
  3. ARC [DP180103155]
  4. Australian Research Council [FT160100112] Funding Source: Australian Research Council

向作者/读者索取更多资源

We infer the collapse times of long-lived neutron stars into black holes using the x-ray afterglows of 18 short gamma-ray bursts. We then apply hierarchical inference to infer properties of the neutron star equation of state and dominant spin-down mechanism. We measure the maximum non-rotating neutron star mass M-TOV = 2.31-0.21(+0.36)M(circle dot )and constrain the fraction of remnants spinning down predominantly through gravitational-wave emission to eta = 0.69(-0.39)(+0.21) with 68% uncertainties. In principle, this method can determine the difference between hadronic and quark equation of states. In practice, however, the data is not yet informative with indications that these neutron stars do not have hadronic equation of states at the 1 sigma level. These inferences all depend on the underlying progenitor mass distribution for short gamma-ray bursts produced by binary neutron star mergers. The recently announced gravitational-wave detection of GW190425 suggests this underlying distribution is different from the locally measured population of double neutron stars. We show that Afrov and q constraints depend on the fraction of binary mergers that form through a distribution consistent with the locally measured population and a distribution that can explain GW190425. The more binaries that form from the latter distribution, the larger Mrov needs to be to satisfy the x-ray observations. Our measurements above are marginalized over this unknown fraction. If instead, we assume GW190425 is not a binary neutron star merger, i.e., the underlying mass distribution of double neutron stars is the same as observed locally, we measure M-TOV =2.26(-0.17)(+0.31)M(circle dot).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据