4.4 Article

A mathematical model of solid-state dewetting of barium thin films on W(112)

期刊

出版社

EDP SCIENCES S A
DOI: 10.1051/mmnp/2019040

关键词

Solid-solid thin film dewetting; barium; W(112)

资金

  1. DARPA INVEST grant [N66001-16-1-4040]
  2. U.S. DOE Office of Science Facility, at Brookhaven National Laboratory [DE-SC0012704]

向作者/读者索取更多资源

Solid state dewetting occurs when a thin solid film is heated. The temperature of dewetting depends on the thickness of the film; dewetting can be observed in the range of 1/3 to 1/2 of the bulk melting temperature. While remaining solid, the film behaves in a manner similar to liquids dewetting and agglomerating to forming islands or droplets. One of the possible mechanisms is the conversion of a metastable thin film geometry into a more stable form. Heating the metastable film gives the film atoms higher mobility, and the films retract, dewetting the surface. This atomic motion can be restricted due to surface anisotropy. We present in situ emission microscopy observations of barium thin films deposited onto W(112) by thermal evaporation. From the modeling viewpoint, the evolution of the film in this system could be divided in four stages: (i) the nucleation and growth of the thin film as a simply connected region; (ii) formation of droplets/islands/hillocks; (iii) nucleation of holes; (iv) evolution of the components of the disconnected film to their equilibrium state. We present a continuum model that is qualitatively consistent with the evolution of the film observed at the initial stage of the experiment and discuss the later stages of the evolution of surface structures.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据