4.7 Article

Improved 1 km resolution PM2.5 estimates across China using enhanced space-time extremely randomized trees

期刊

ATMOSPHERIC CHEMISTRY AND PHYSICS
卷 20, 期 6, 页码 3273-3289

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/acp-20-3273-2020

关键词

-

资金

  1. National Key R&D Program of China [2017YFC1501702]
  2. National Natural Science Foundation of China [91544217]
  3. U.S. National Science Foundation [AGS1534670]
  4. BNU Interdisciplinary Research Foundation for the First-Year Doctoral Candidates [BNUXKJC1808]

向作者/读者索取更多资源

Fine particulate matter with aerodynamic diameters <= 2.5 mu m (PM2.5) has adverse effects on human health and the atmospheric environment. The estimation of surface PM2.5 concentrations has made intensive use of satellite-derived aerosol products. However, it has been a great challenge to obtain high-quality and high-resolution PM2.5 data from both ground and satellite observations, which is essential to monitor air pollution over small-scale areas such as metropolitan regions. Here, the space-time extremely randomized trees (STET) model was enhanced by integrating updated spatiotemporal information and additional auxiliary data to improve the spatial resolution and overall accuracy of PM2.5 estimates across China. To this end, the newly released Moderate Resolution Imaging Spectroradiometer Multi-Angle Implementation of Atmospheric Correction AOD product, along with meteorological, topographical and land-use data and pollution emissions, was input to the STET model, and daily 1 km PM2.5 maps for 2018 covering mainland China were produced. The STET model performed well, with a high out-of-sample (out-of-station) cross-validation coefficient of determination (R-2) of 0.89 (0.88), a low root-mean-square error of 10.33 (10.93) mu g m(-3), a small mean absolute error of 6.69 (7.15) mu g m(-3) and a small mean relative error of 21.28% (23.69 %). In particular, the model captured well the PM2.5 concentrations at both regional and individual site scales. The North China Plain, the Sichuan Basin and Xinjiang Province always featured high PM2.5 pollution levels, especially in winter. The STET model outperformed most models presented in previous related studies, with a strong predictive power (e.g., monthly R-2 = 0.80), which can be used to estimate historical PM2.5 records. More importantly, this study provides a new approach for obtaining high-resolution and high-quality PM2.5 dataset across mainland China (i.e., ChinaHighPM(2.5)), important for air pollution studies focused on urban areas.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据