4.6 Article

Graphene encapsulated metallic state Ce2Sn2O7 as a novel anode material for superior lithium-ion batteries and capacitors

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 8, 期 11, 页码 5517-5524

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ta13086a

关键词

-

资金

  1. Science & Technology Department of Jilin Province [20170101177JC]
  2. Education Department of Jilin Province [JJKH20200759KJ]

向作者/读者索取更多资源

The development of bimetallic-based ternary materials (BTMs) has attracted much attention due to their multi-component flexibility and synergistic effect. Herein, BTM (Ce2Sn2O7) nanoparticles are encapsulated into graphene (Ce2Sn2O7/RGO), which served as a novel anode material for lithium-ion batteries and capacitors (LIBs/LICs). Benefiting from the synergistic effects from two metal elements and the conductive networks of graphene, the optimized Ce2Sn2O7/RGO delivers a reversible capacity of 814.6 mA h g(-1) at 0.05 A g(-1), good cycling performance with a reversible capacity of 369.5 mA h g(-1) after 1500 cycles at 1 A g(-1) and a superior rate capability of 432.4 mA h g(-1) at 2 A g(-1) in Li+ half cells. Meanwhile, the detailed phase transition and kinetics analysis as well as the theoretical calculation are performed to investigate the reaction mechanisms behind the good electrochemical performance. Furthermore, the Ce2Sn2O7/RGO also shows good lithium-ion full cell and capacitor performances coupled with commercial LiCoO2 and activated carbon, respectively, which further demonstrates the application prospect of Ce2Sn2O7/RGO.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据