4.6 Article

Black phosphorus quantum dots facilitate carrier separation for enhancing hydrogen production over hierarchical Cu7S4/ZnIn2S4 composites

期刊

CATALYSIS SCIENCE & TECHNOLOGY
卷 10, 期 4, 页码 1030-1039

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9cy02278c

关键词

-

资金

  1. Natural Science Foundation of Shanghai [19ZR1403500]
  2. National Natural Science Foundation of China (NNSFC) [21373054]
  3. Natural Science Foundation of Shanghai Science and Technology Committee [19DZ2270100]

向作者/读者索取更多资源

At present, inefficient charge separation is considered to be one of the most important factors, limiting the photocatalytic hydrogen production. To solve this problem, herein, hierarchical Cu7S4/ZnIn2S4 decorated with black phosphorus quantum dots (BPQDs) was rationally designed and its photocatalytic hydrogen evolution was investigated under visible light. The structural characterization proved the wrapped morphology of ZnIn2S4 grown on the Cu7S4 nanocrystals and BPQDs were uniformly dispersed on the surface of ZnIn2S4. Moreover, the close hierarchical structure of Cu7S4 with ZnIn2S4 and carrier separation facilitator of BPQDs were synergistically beneficial for boosting charge separation and transfer. The hydrogen production results showed that the ternary BPQDs@10% Cu7S4/ZnIn2S4 yielded the highest H-2 evolution rate of 885 mu mol g(-1) h(-1), about 6.8 times higher than that of the pristine ZnIn2S4, indicating its promising application in hydrogen production. In addition, the possible working mechanism was deeply explored using photo-electrochemistry, and the results illustrated that the enhanced photocatalytic hydrogen evolution can be attributed to the efficient charge separation caused by the formation of the hierarchical interface structure and increased carrier transfer efficiency of BPQDs. This study demonstrates that the regulation of interfacial charge transfer can positively facilitate photocatalytic activity and the ternary BPQDs@10% Cu7S4/ZnIn2S4 can be employed as an efficient candidate for hydrogen production.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据