4.7 Article

Controllable synthesis of CeO2/g-C3N4 composites and their applications in the environment

期刊

DALTON TRANSACTIONS
卷 44, 期 15, 页码 7021-7031

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c4dt03793f

关键词

-

资金

  1. National Nature Science Foundation of China [21177050, 21476097, 21407065, 21406094]
  2. Natural Science Foundation of Jiangsu Province [BK20131207, BK20140533]
  3. Postdoctoral Foundation of China [2014M551520]

向作者/读者索取更多资源

This research has developed a photocatalytic reactor that includes circulating water, light, and a temperature control system. CeO2/g-C3N4 composites with high photocatalytic activity and stability were synthesized by a simple and facile hydrothermal method. The obtained photocatalysts were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). It was found that in the CeO2/g-C3N4 composites, the CeO2 nanoparticles were homogeneously cubic in shape (from 3 to 10 nm) and were evenly dispersed on the surface of the g-C3N4. At constant temperature (30 degrees C), 5% CeO2/g-C3N4 photocatalyst showed the best photocatalytic activity for degrading organic dye methylene blue (MB) under visible light irradiation. The photocatalytic reaction for degrading MB followed first-order kinetics and 5% CeO2/g-C3N4 exhibited a higher apparent rate of 1.2686 min(-1), 7.8 times higher than that of the pure g-C3N4 (0.1621 min(-1)). In addition, it was found that 5% CeO2/g-C3N4 had a new property that it could be used as a sensor for the determination of trace amounts of Cu2+. Such unique design and one-step synthesis, with an exposed high-activity surface, are important for both technical applications and theoretical investigations.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据