4.6 Article

Mitochondria-targeted delivery and light controlled release of iron prodrug and CO to enhance cancer therapy by ferroptosis

期刊

NEW JOURNAL OF CHEMISTRY
卷 44, 期 8, 页码 3478-3486

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9nj05860e

关键词

-

资金

  1. National Science Funds for Distinguished Young Scholars [21525420, 51625305]
  2. National Natural Science Foundation of China [51873202]

向作者/读者索取更多资源

Mitochondrial malfunction is considered to be a decisive signal of apoptosis. It would be a promising strategy to target mitochondria in cancer cells to generate reactive oxygen species (ROS), thus directly inducing mitochondrial damage. We herein reported a mitochondria-targeted, photo-responsive polymer (Mito-PNBE), which can self-assemble into nanoparticles (Fe-CO@Mito-PNBE) encapsulated with diphenylcyclopropenone (light-responsive CO prodrugs) and aminoferrocene-based prodrugs via hydrophobic interactions. Upon UV-irradiation, the rapid release of CO and aminoferrocene-based prodrugs caused by disassembly was observed. On one hand, the released carbon monoxide in mitochondria could enhance ROS generation and accelerate oxidative metabolism. On the other hand, the aminoferrocene-based prodrugs will release Fe3+/Fe2+ ions in the tumor microenvironment, thus triggering the Fenton reaction, which generates more ROS and damages the mitochondria. Thus, the synergistic effect of the two drugs produces enough amounts of ROS in the mitochondria, leading to mitochondrial collapse with an enhanced cancer therapeutic effect. This multifunctional platform has potential in precision cancer therapy.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据