4.7 Article

Alluaudite Na2Co2Fe(PO4)3 as an electroactive material for sodium ion batteries

期刊

DALTON TRANSACTIONS
卷 44, 期 17, 页码 7881-7886

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c5dt00971e

关键词

-

资金

  1. Scientific User Facilities Division, Office of Basic Energy Sciences, U.S. Department of Energy

向作者/读者索取更多资源

The electroactive orthophosphate Na2Co2Fe(PO4)(3) was synthesized using a solid state reaction. Its crystal structure was solved using the combination of powder X-ray-and neutron-diffraction data. This material crystallizes according to the alluaudite structure (S.G. C2/c). The structure consists of edge sharing [MO6] octahedra (M = Fe, Co) resulting in chains parallel to [-101]. These chains are linked together via the [PO4] tetrahedra to form two distinct tunnels in which sodium cations are located. The electrochemical properties of Na2Co2Fe(PO4)(3) were evaluated by galvanostatic charge-discharge cycling. During the first discharge to 0.03 V, Na2Co2Fe(PO4)(3) delivers a specific capacity of 604 mA h g(-1). This capacity is equivalent to the reaction of more than seven sodium ions per formula unit. Hence, this is a strong indication of a conversion-type reaction with the formation of metallic Fe and Co. The subsequent charge and discharge involved the reaction of fewer Na ions as expected for a conversion reaction. When discharged to 0.9 V, the material intercalated only one Na+-ion leading to the formation of a new phase Na3Co2Fe(PO4)(3). This phase could then be cycled reversibly with an average voltage of 3.6 V vs. Na+/Na and a capacity of 110 mA h g(-1). This result is in good agreement with the theoretical capacity expected from the extraction/insertion of two sodium atoms in Na2Co2Fe(PO4)(3).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据