4.8 Article

A multidimensional nanostructural design towards electrochemically stable and mechanically strong hydrogel electrodes

期刊

NANOSCALE
卷 12, 期 12, 页码 6637-6643

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0nr01414a

关键词

-

资金

  1. Natural Science Foundation of Jiangsu Province [BK20180407]
  2. National Natural Science Foundation of China [51903047, 51731004]
  3. Fundamental Research Funds for the Central Universities

向作者/读者索取更多资源

Electrically conductive hydrogels are polymeric composites that combine electroactive fillers with hydrogel networks. They offer an electrically conductive pathway for electron transfer and provide an interconnected framework for ion diffusion, as well as an extended active interface for redox reactions, being ideal frameworks to design and construct flexible electrodes. In this work, we integrate nanoscale building blocks into a unique ternary (1, 2 and 3 dimensional) hydrogel architecture, where conductive polymer polypyrrole (PPy) nanofibers (1D) and MXene nanosheets (2D) are uniformly dispersed in polyvinyl alcohol (PVA) matrixes (3D). 1D nanofibers and 2D nanosheets were found to greatly increase the mechanical properties of the hydrogel hosts, demonstrating a remarkable tensile strength of 10.3 MPa and a large elongation over 380%. Moreover, the as-fabricated hierarchical structure effectively promotes electrolyte diffusion, exhibiting exceptional capacitive characteristics, including a high gravimetric specific capacitance of 614 F g(-1) (at 1 A g(-1)) and an unprecedented cycling stability (100% capacitance retention over 10 000 cycles). A solid-state supercapacitor is assembled based on these MXene/PPy-PVA hydrogels, which demonstrates an efficient approach to the fabrication of wearable energy storage devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据