4.6 Article

Distinct structural modulation of photosystem I and lipid environment stabilizes its tetrameric assembly

期刊

NATURE PLANTS
卷 6, 期 3, 页码 314-+

出版社

NATURE PUBLISHING GROUP
DOI: 10.1038/s41477-020-0610-x

关键词

-

向作者/读者索取更多资源

Photosystem I (PSI) is able to form different oligomeric states across various species. To reveal the structural basis for PSI dimerization and tetramerization, we structurally investigated PSI from the cyanobacterium Anabaena. This revealed a disrupted trimerization domain due to lack of the terminal residues of PsaL in the lumen, which resulted in PSI dimers with loose connections between monomers and weaker energy-coupled chlorophylls than in the trimer. At the dimer surface, specific phospholipids, cofactors and interactions in combination facilitated recruitment of another dimer to form a tetramer. Taken together, the relaxed luminal connections and lipid specificity at the dimer interface account for membrane curvature. PSI tetramer assembly appears to increase the surface area of the thylakoid membrane, which would contribute to PSI crowding. Photosystem I from the cyanobacterium Anabaena has a disrupted trimerization domain resulting in dimers with loose connections between monomers. Phospholipids and cofactors at the dimer surface facilitate further dimerization to form a tetramer.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据