4.5 Article

Novel Synthesized Nanofibrous Scaffold Efficiently Delivered hBMP-2 Encoded in Adenoviral Vector to Promote Bone Regeneration

期刊

JOURNAL OF BIOMEDICAL NANOTECHNOLOGY
卷 13, 期 4, 页码 437-446

出版社

AMER SCIENTIFIC PUBLISHERS
DOI: 10.1166/jbn.2017.2361

关键词

Bone Formation; PLGA Nanofibrous Scaffold; hBMP-2; Osteogenic Differentiation; Adenoviral Vector

资金

  1. National Natural Science Foundation of China [81271111, 81400488, 2016YFC1102804, 81600823 81600843]

向作者/读者索取更多资源

Treatment of bone defect, especially large bone defect, is still a challenge for physicians clinically. Bone morphogenetic protein 2 (BMP-2) can induce osteoblast differentiation and promote new bone formation. Recently, nanomaterials have been widely used as a carrier to hold and deliver biomolecules, like human bone morphogenetic protein 2 gene (hBMP-2) in target cells/tissues. Most nanomethods, however, need further modification in order to work more reliably in clinical applications. Therefore, in this study, we created a novel poly(lactic-co-glycolic acid [PLGA]) nanofibrous scaffold using an electrospinning technique; then, using a lyophilization process to allow nanofibrous scaffold to adsorb hBMP-2 adenoviral vector, AdCMV-hBMP2. Results indicate that the lyophilized poly(lactic-co-glycolic acid) nanofibrous scaffold/AdCMV-hBMP2 can efficiently release and transduce cells in vitro and in vivo, and secrete functional hBMP-2 to promote osteogenic differentiation in vitro, and new bone generation in vivo. Importantly, the amount of newly formed bone covered >80% of the bone defect area 8 weeks post-implantation in vivo, in which the defect could not be repaired without any treatment in general. Our data demonstrate that the lyophilized PLGA nanofibrous scaffold/AdCMV-hBMP2 created herein stably and efficiently release functional viral vector to transduce local cells, resulting in secretion of hBMP-2 and promote new bone formation in vivo. Our new nanodelivery method has potential clinical application for the repair of large bone defects.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据