4.4 Article

Mechanical, chemical and biological damage modes within head-neck tapers of CoCrMo and Ti6Al4V contemporary hip replacements

出版社

WILEY
DOI: 10.1002/jbm.b.33972

关键词

corrosion; fretting; implant retrieval; joint replacement; electron microscopy

资金

  1. NIH [R01 AR070181]
  2. NATIONAL INSTITUTE OF ARTHRITIS AND MUSCULOSKELETAL AND SKIN DISEASES [R01AR070181] Funding Source: NIH RePORTER

向作者/读者索取更多资源

Total hip replacement (THR) failure due to mechanically assisted crevice corrosion within modular head-neck taper junctions remains a major concern. Several processes leading to the generation of detrimental corrosion products have been reported in first generation modular devices. Contemporary junctions differ in their geometries, surface finishes, and head alloy. This study specifically provides an overview for CoCrMo/CoCrMo and CoCrMo/Ti6Al4V head-neck contemporary junctions. A retrieval study of 364 retrieved THRs was conducted which included visual examination and determination of damage scores, as well as the examination of damage features using scanning electron microscopy. Different separately occurring or overlapping damage modes were identified that appeared to be either mechanically or chemically dominated. Mechanically dominated damage features included plastic deformation, fretting, and material transfer, whereas chemically dominate damage included pitting corrosion, etching, intergranular corrosion, phase boundary corrosion, and column damage. Etching associated cellular activity was also observed. Furthermore, fretting corrosion, formation of thick oxide films, and imprinting were observed which appeared to be the result of both mechanical and chemical processes. The occurrence and extent of damage caused by different modes was shown to depend on the material, the material couple, and alloy microstructure. In order to minimize THR failure due to material degradation within modular junctions, it is important to distinguish different damage modes, determine their cause, and identify appropriate counter measures, which may differ depending on the material, specific microstructural alloy features, and design factors such as surface topography. (c) 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 1672-1685, 2018.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据