4.4 Article

In vitro and in vivo biological characterization of poly(lactic acid) fiber scaffolds synthesized by air jet spinning

出版社

WILEY
DOI: 10.1002/jbm.b.34053

关键词

PLA; air jet spinning; in vitro and in vivo degradation assay; nanofibers; SEM; FTIR; XRD; biocompatibility; MTT assay; tissue engineering

资金

  1. CONACYT [299078]

向作者/读者索取更多资源

Poly(lactic acid) (PLA) is one of the most promising renewable and biodegradable polymers for mimic extracellular matrix for tissue engineering applications. In this work, PLA spun membrane scaffold were successfully prepared by air jet spinning technology. Morphology, mechanical properties, in vitro biocompatibility, and in vitro and in vivo degradation of PLA fibrous scaffold were characterized by X-ray diffraction, Fourier Transform Infrared, and scanning electron microscope (SEM). Morphological results assessed by SEM analyses indicated that PLA scaffolds possessed an average fiber diameter of approximately 0.558 + 0.141 mu m for 7% w/v of PLA and approximately 0.647 +/- 0.137 mu m for 10% w/v. Interestingly, our results showed that the nanofiber size of PLA scaffold allow structural stability after 100 days of in vitro degradation in Ringer solution where the average fiber diameter were of approximately 0.633 +/- 0.147 mu m for 7% w/v and approximately 0.645 +/- 0.140 mu m for 10% w/v of PLA. Mechanical properties of PLA fibers scaffold after in vitro degradation showed decrease in terms of flexibility elongation, and less energy was needed to achieve maximal elastic deformation. The fiber size exerts an influence on the biological response of human Bone Marrow Mesenchymal Stromal Cells as confirmed by MTT assay after 9 days of cell culture and the in vivo degradation assay of 7% w/v and 10% w/v of PLA scaffold, did not demonstrate evidence of toxicity with a mild inflammatory respond. In conclusion, airbrushing technology promises to be a viable and attractive alternative technique for producing a biocompatible PLA nanofiber scaffold that could be considered for tissue engineering regeneration. (C) 2017 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据