4.5 Article

Extracellular matrix particle-glycosaminoglycan composite hydrogels for regenerative medicine applications

期刊

出版社

WILEY
DOI: 10.1002/jbm.a.36218

关键词

decellularized; extracellular matrix; hydrogel; composite; porcine tissue

资金

  1. Maryland Stem Cell Research Fund
  2. Hartwell Foundation

向作者/读者索取更多资源

Tissue extracellular matrix (ECM) is a complex material made up of fibrous proteins and ground substance (glycosaminoglycans, GAGs) that are secreted by cells. ECM contains important biological cues that modulate cell behaviors, and it also serves as a structural scaffold to which cells can adhere. For clinical applications, where immune rejection is a constraint, ECM can be processed using decellularization methods intended to remove cells and donor antigens from tissue or organs, while preserving native biological cues essential for cell growth and differentiation. In this study, a decellularized ECM-based composite hydrogel was formulated by using modified GAGs that covalently bind tissue particles. These GAG-ECM composite hydrogels combine the advantages of solid decellularized ECM scaffolds and pepsindigested ECM hydrogels by facilitating ECM hydrogel formation without a disruptive enzymatic digestion process. Additionally, engineered hydrogels can contain more than one type of ECM (from bone, fat, liver, lung, spleen, cartilage, or brain), at various concentrations. These hydrogels demonstrated tunable gelation kinetics and mechanical properties, offering the possibility of numerous in vivo and in vitro applications with different property requirements. Retained bioactivity of ECM particles crosslinked into this hydrogel platform was confirmed by the variable response of stem cells to different types of ECM particles with respect to osteogenic differentiation in vitro, and bone regeneration in vivo. (C) 2017 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据