4.5 Article

Control of cell growth on 3D-printed cell culture platforms for tissue engineering

期刊

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
卷 105, 期 12, 页码 3281-3292

出版社

WILEY
DOI: 10.1002/jbm.a.36188

关键词

cell culture platform; 3D printing; cell growth; fibroblasts; aligned scaffolds

资金

  1. NSFC [31600782]
  2. Natural Science Foundation of Hunan, China [2015JJ4013]
  3. Scientific Research Foundation of Hunan University [53112102]

向作者/读者索取更多资源

Biocompatible tissue growth has excellent prospects for tissue engineering. These tissues are built over scaffolds, which can influence aspects such as cell adhesion, proliferation rate, morphology, and differentiation. However, the ideal 3D biological structure has not been developed yet. Here, we applied the electro-hydrodynamic jet (E-jet) 3D printing technology using poly-(lactic-co-glycolic acid, PLGA) solution to print varied culture platforms for engineered tissue structures. The effects of different parameters (electrical voltage, plotting speed, and needle sizes) on the outcome were investigated. We compared the biological compatibility of the 3D printed culture platforms with that of random fibers. Finally, we used the 3D-printed PLGA platforms to culture fibroblasts, the main cellular components of loose connective tissue. The results show that the E-jet printed platforms could guide and improve cell growth. These highly aligned fibers were able to support cellular alignment and proliferation. Cell angle was consistent with the direction of the fibers, and cells cultured on these fibers showed a much faster migration, potentially enhancing wound healing performance. Thus, the potential of this technology for 3D biological printing is large. This process can be used to grow biological scaffolds for the engineering of tissues. (c) 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 3281-3292, 2017.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据