4.5 Article

Bisphosphonate-functionalized poly(β-amino ester) network polymers

期刊

JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A
卷 105, 期 5, 页码 1412-1421

出版社

WILEY
DOI: 10.1002/jbm.a.36026

关键词

biodegradable polymer; poly(beta-aminoester); cyto-toxicity; cross-linked polymers; biocompatibility

资金

  1. TUBITAK [114Z926]

向作者/读者索取更多资源

Three novel bisphosphonate-functionalized secondary diamines are synthesized and incorporated into poly(beta-amino ester)s (PBAEs) to investigate the effects of bisphosphonates on biodegradation and toxicity of PBAE polymer networks. These three novel amines, BPA1, BPA2, and BPA3, were prepared from the reactions of 1,4-butanediamine, 1,6-hexanediamine, or 4,9-dioxa-1,12-dodecanediamine with tetraethyl vinylidene bisphosphonate, respectively. The PBAE macromers were obtained from the aza-Michael addition reaction of these amines to 1,6-hexane diol diacrylate (HDDA) and poly(ethylene glycol) diacrylate (PEGDA, M-n=575) and photopolymerized to produce biodegradable gels. These gels with different chemistries exhibited similar degradation behavior with mass loss of 53-73% within 24 h, indicating that degradation is mostly governed by the bisphosphonate group. Based on the in vitro cytotoxicity evaluation against NIH 3T3 mouse embryonic fibroblast cells, the degradation products do not exhibit significant toxicity in most cases. It was also shown that PBAE macromers can be used as cross-linkers for the synthesis of 2-hydroxyethyl methacrylate hydrogels, conferring small and customizable degradation rates upon them. The materials reported have potential to be used as nontoxic degradable biomaterials. (C) 2017 Wiley Periodicals, Inc.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据