4.8 Article

Type-II/type-II band alignment to boost spatial charge separation: a case study of g-C3N4 quantum dots/a-TiO2/r-TiO2 for highly efficient photocatalytic hydrogen and oxygen evolution

期刊

NANOSCALE
卷 12, 期 10, 页码 6037-6046

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/d0nr00176g

关键词

-

资金

  1. National Natural Science Foundation of China [51772085, U1830138]

向作者/读者索取更多资源

Efficient spatial charge separation and transfer that are critical factors for solar energy conversion primarily depend on the energetic alignment of the band edges at interfaces in heterojunctions. Herein, we first report that constructing a 0D/0D type-II(T-II)/T-II heterojunction is an effective strategy to ingeniously achieve long-range charge separation by taking a ternary heterojunction of TiO2 and graphitic carbon nitride (g-C3N4) as a proof-of-concept. Incorporating g-C3N4 quantum dots (QCN), as the third component, into the commercial P25 composed of anatase (a-TiO2) and rutile (r-TiO2) can be realized via simply mixing the commercially available Degussa P25 and QCN solution followed by heat treatment. The strong coupling and matching band structures among a-TiO2, r-TiO2 and QCN result in the construction of novel T-II/T-II heterojunctions, which would promote the spatial separation and transfer of photogenerated electrons and holes. Moreover, QCN plays a key role in reinforcing light absorption. Particularly, the unique 0D/0D architecture possesses the advantages of abundant active sites for the photocatalytic reaction. As a result, the optimized QCN/a-TiO2/r-TiO2 heterojunctions exhibit enhanced photocatalytic H-2 and O-2 evolution, especially the hydrogen evolution rate (49.3 mu mol h(-1)) is 11.7 times that of bare P25 under visible light irradiation, and sufficient catalytic stability as evidenced by the recycling experiments. The remarkably enhanced photocatalytic activity can be attributed to the synergistic effects of the energy level alignment at interfaces, the dimensionality and component of the heterojunctions. This work provides a stepping stone towards the design of novel heterojunctions for photocatalytic water splitting.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据