4.6 Article

The role of the Met20 loop in the hydride transfer in Escherichia coli dihydrofolate reductase

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 292, 期 34, 页码 14229-14239

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M117.777136

关键词

enzyme catalysis; molecular dynamics; protein dynamic; quantum chemistry; reductase; dihydrofolate reductase

资金

  1. Israel Science Foundation [2146/15]
  2. United States-Israel Binational Science Foundation [2012340]
  3. Directorate For Geosciences
  4. Division Of Earth Sciences [2012340] Funding Source: National Science Foundation

向作者/读者索取更多资源

A key question concerning the catalytic cycle of Escherichia coli dihydrofolate reductase (ecDHFR) is whether the Met(20) loop is dynamically coupled to the chemical step during catalysis. A more basic, yet unanswered question is whether the Met(20) loop adopts a closed conformation during the chemical hydride transfer step. To examine the most likely conformation of the Met(20) loop during the chemical step, we studied the hydride transfer in wild type (WT) ecDHFR using hybrid quantum mechanics-molecular mechanics free energy simulations with the Met(20) loop in a closed and disordered conformation. Additionally, we investigated three mutant forms (I14X; X = Val, Ala, Gly) of the enzyme that have increased active site flexibility and donor-acceptor distance dynamics in closed and disordered Met(20) loop states. We found that the conformation of the Met(20) loop has a dramatic effect on the ordering of active site hydration, although the Met(20) loop conformation only has a moderate effect on the hydride transfer rate and donor-acceptor distance dynamics. Finally, we evaluated the pK(a) of the substrate N5 position in closed and disordered Met(20) loop states and found a strong correlation between N5 basicity and the conformation of the Met(20) loop.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据