4.6 Article

Temporal characterization of cell-adaptive and -maladaptive mechanisms during chronic high-fat feeding in C57BL/6NTac mice

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 292, 期 30, 页码 12449-12459

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M117.781047

关键词

cell; gene expression; insulin secretion; peroxisome proliferator-activated receptor (PPAR); unfolded protein response (UPR); adaptation; high-fat diet

资金

  1. American Diabetes Association
  2. National Institutes of Health [DK56818]

向作者/读者索取更多资源

The onset of type 2 diabetes is characterized by transition from successful to failed insulin secretory compensation to obesity-related insulin resistance and dysmetabolism. Energy-rich diets in rodents are commonly studied models of compensatory increases in both insulin secretion and cell mass. However, the mechanisms of these adaptive responses are incompletely understood, and it is also unclear why these responses eventually fail. We measured the temporal trends of glucose homeostasis, insulin secretion, cell morphometry, and islet gene expression in C57BL/6NTac mice fed a 60% high-fat diet (HFD) or control diet for up to 16 weeks. A 2-fold increased hyperinsulinemia was maintained for the first 4 weeks of HFD feeding and then further increased through 16 weeks. cell mass increased progressively starting at 4 weeks, principally through nonproliferative growth. Insulin sensitivity was not significantly perturbed until 11 weeks of HFD feeding. Over the first 8 weeks, we observed two distinct waves of increased expression of cell functional and prodifferentiation genes. This was followed by activation of the unfolded protein response at 8 weeks and overt cell endoplasmic reticulum stress at 12-16 weeks. In summary, cell adaptation to an HFD in C57BL/6NTac mice entails early insulin hypersecretion and a robust growth phase along with hyperexpression of related genes that begin well before the onset of observed insulin resistance. However, continued HFD exposure results in cessation of gene hyperexpression, cell functional failure, and endoplasmic reticulum stress. These data point to a complex but not sustainable integration of cell-adaptive responses to nutrient overabundance, obesity development, and insulin resistance.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据