4.6 Article

Polycomb repressive complex 2 in an autoinhibited state

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 292, 期 32, 页码 13323-13332

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M117.787572

关键词

-

资金

  1. Office of Science, Office of Basic Energy Sciences, of the United States DOE [DE-AC02-05CH11231]
  2. United States Department of Energy, Office of Science, Office of Basic Energy Sciences [DE-AC02-76SF00515]
  3. DOE Office of Biological and Environmental Research
  4. National Institutes of Health, National Institute of General Medical Sciences [P41GM103393]
  5. DOE Office of Science by Argonne National Laboratory [DE-AC02-06CH11357]

向作者/读者索取更多资源

Polycomb-group proteins control many fundamental biological processes, such as anatomical development in mammals and vernalization in plants. Polycomb repressive complex 2 (PRC2) is responsible for methylation of histone H3 lysine 27 (H3K27), and trimethylated H3K27 (H3K27me3) is implicated in epigenetic gene silencing. Recent genomic, biochemical, and structural data indicate that PRC2 is broadly conserved from yeast to human in many aspects. Here, we determined the crystal structure of an apo-PRC2 from the fungus Chaetomium thermophilum captured in a bona fide autoinhibited state, which represents a novel conformation of PRC2 associated with enzyme regulation in light of the basal and stimulated states that we reported previously. We found that binding by the cofactor S-adenosylmethionine mitigates this autoinhibited structural state. Using steady-state enzyme kinetics, we also demonstrated that disrupting the autoinhibition results in a vastly activated enzyme complex. Autoinhibition provides a novel structural platform that may enable control of PRC2 activity in response to diverse transcriptional states and chromatin contexts and set a ground state to allow PRC2 activation by other cellular mechanisms as well.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据