4.5 Article

The preceding root system drives the composition and function of the rhizosphere microbiome

期刊

GENOME BIOLOGY
卷 21, 期 1, 页码 -

出版社

BMC
DOI: 10.1186/s13059-020-01999-0

关键词

Soil microbiome; Metagenome; Tillage; Agricultural system; Root

资金

  1. Australian Centre for International Agricultural Research [CIM/2008/027]
  2. Australian Research Council [IH140100013]
  3. Grains Research and Development Corporation
  4. International Technology Cooperation Project from Shandong Academy of Sciences [2019GHZD11]
  5. Department of Trade, Tourism and Investment of the South Australian Government
  6. Waite Research Institute
  7. University of Adelaide
  8. CSIRO Agriculture and Food

向作者/读者索取更多资源

Background The soil environment is responsible for sustaining most terrestrial plant life, yet we know surprisingly little about the important functions carried out by diverse microbial communities in soil. Soil microbes that inhabit the channels of decaying root systems, the detritusphere, are likely to be essential for plant growth and health, as these channels are the preferred locations of new root growth. Understanding the microbial metagenome of the detritusphere, and how it responds to agricultural management such as crop rotations and soil tillage, is vital for improving global food production. Results This study establishes an in-depth soil microbial gene catalogue based on the living-decaying rhizosphere niches in a cropping soil. The detritusphere microbiome regulates the composition and function of the rhizosphere microbiome to a greater extent than plant type: rhizosphere microbiomes of wheat and chickpea were homogenous (65-87% similarity) in the presence of decaying root (DR) systems but were heterogeneous (3-24% similarity) where DR was disrupted by tillage. When the microbiomes of the rhizosphere and the detritusphere interact in the presence of DR, there is significant degradation of plant root exudates by the rhizosphere microbiome, and genes associated with membrane transporters, carbohydrate and amino acid metabolism are enriched. Conclusions The study describes the diversity and functional capacity of a high-quality soil microbial metagenome. The results demonstrate the contribution of the detritusphere microbiome in determining the metagenome of developing root systems. Modifications in root microbial function through soil management can ultimately govern plant health, productivity and food security.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据