4.6 Article

YZiCS: Unveiling the Quenching History of Cluster Galaxies Using Phase-space Analysis

期刊

出版社

IOP Publishing Ltd
DOI: 10.3847/1538-4365/ab7377

关键词

Galaxy evolution

资金

  1. Korean National Research Foundation [NRF-2017R1A2A05001116]
  2. KREONET [KSC-2014-G2-003]
  3. Norwegian Research Council [276043]
  4. National Research Council of Science & Technology (NST), Republic of Korea [2020183009] Funding Source: Korea Institute of Science & Technology Information (KISTI), National Science & Technology Information Service (NTIS)

向作者/读者索取更多资源

We used the time since infall (TSI) of galaxies, obtained from the Yonsei Zoom-in Cluster Simulation, and the star formation rate (SFR) from the Sloan Digital Sky Survey Data Release 10 to study how quickly the star formation of disk galaxies is quenched in cluster environments. We first confirm that both simulated and observed galaxies are consistently distributed in phase space. We then hypothesize that the TSI and SFR are causally connected; thus, both the TSI and SFR of galaxies at each position of phase space can be associated through abundance matching. Using a flexible model, we derive the star formation history (SFH) of cluster galaxies that best reproduces the relationship between the TSI and SFR at z similar to 0.08. According to this SFH, we find that galaxies with M-* > 10(9.5) M generally follow the so-called delayed-then-rapid quenching pattern. Our main results are as follows: (i) part of the quenching takes place outside clusters through mass quenching and preprocessing. The e-folding timescale of this ex situ quenching phase is roughly 3 Gyr with a strong inverse mass dependence. (ii) The pace of quenching is maintained roughly for 2 Gyr (delay time) during the first crossing time into the cluster. During the delay time, quenching remains gentle, probably because gas loss happens primarily on hot and neutral gases. (iii) Quenching becomes more dramatic (e-folding timescale of roughly 1 Gyr) after delay time, probably because ram pressure stripping is strongest near the cluster center. Counterintuitively, more massive galaxies show shorter quenching timescales mainly because they enter their clusters with lower gas fractions due to ex situ quenching.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据