4.6 Article

Hierarchical nanoarchitectured hybrid electrodes based on ultrathin MoSe2 nanosheets on 3D ordered macroporous carbon frameworks for high-performance sodium-ion batteries

期刊

JOURNAL OF MATERIALS CHEMISTRY A
卷 8, 期 5, 页码 2843-2850

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9ta13377a

关键词

-

资金

  1. Welch Foundation Award [F-1861]
  2. Alfred P. Sloan Research Fellowship
  3. Camille Dreyfus Teacher-Scholar Award
  4. Shanxi Scholarship Council of China [2015-034]
  5. Natural Science Foundation of Shanxi Province of China [201701D221077]
  6. Australian Research Council (ARC) [DP160102627, LP160100273]

向作者/读者索取更多资源

Sodium-ion batteries (SIBs) have been considered a promising alternative to lithium-ion batteries for large-scale stationary energy storage due to their low cost and the abundant resources of sodium. Nevertheless, the lack of anodes with high capacity and long-term cycling stability seriously hinders the commercialization of SIBs. Herein, ultrathin 2D MoSe2 nanosheets (similar to 2 nm) strongly bonded on 3D ordered macroporous (3DOM) carbon are designed to greatly improve sodium storage. The resulting MoSe2@C composite delivers high capacity (410 mA h g(-1) at 0.5 A g(-1) after 100 cycles, considering the total weight of the active MoSe2@C), superior rate capability (279 mA h g(-1) at 10 A g(-1)), and long-term cycling stability (384 mA h g(-1) at 5 A g(-1) after 2000 cycles). The enhanced electrochemical performance can be ascribed to synergistic effects between the hybrid structures constructed from 2D MoSe2 nanosheets and the 3DOM carbon architecture, which can provide expanded interlayer spacing (0.76 nm for a single layer) facilitating Na+ insertion/extraction, strong electronic coupling of Mo-C boosting the fast electron/ion transfer, and ordered 3D cavities accommodating the volume expansion and preventing the stacking of MoSe2 nanosheets upon cycling.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据