4.6 Article

Spermine inhibits Vibrio cholerae biofilm formation through the NspS-MbaA polyamine signaling system

期刊

JOURNAL OF BIOLOGICAL CHEMISTRY
卷 292, 期 41, 页码 17025-17036

出版社

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M117.801068

关键词

bacterial signal transduction; biofilm; cyclic di-GMP (c-di-GMP); polyamine; Vibrio cholerae

资金

  1. National Institutes of Health [AI096358, GM109259]

向作者/读者索取更多资源

The aquatic bacterium and human intestinal pathogen, Vibrio cholerae, senses and responds to a variety of environment-specific cues to regulate biofilm formation. Specifically, the polyamines norspermidine and spermidine enhance and repress V. cholerae biofilm formation, respectively. These effects are relevant for understanding V. cholerae pathogenicity and are mediated through the periplasmic binding protein NspS and the transmembrane bis-(3-5) cyclic diguanosine monophosphate (c-di-GMP) phosphodiesterase MbaA. However, the levels of spermidine required to inhibit biofilm formation through this pathway are unlikely to be encountered by V. cholerae in aquatic reservoirs or within the human host during infection. We therefore hypothesized that other polyamines in the gastrointestinal tract may control V. cholerae biofilm formation at physiological levels. The tetramine spermine has been reported to be present at nearly 50 m concentrations in the intestinal lumen. Here, we report that spermine acts as an exogenous cue that inhibits V. cholerae biofilm formation through the NspS-MbaA signaling system. We found that this effect probably occurs through a direct interaction of spermine with NspS, as purified NspS protein could bind spermine in vitro. Spermine also inhibited biofilm formation by altering the transcription of the vps genes involved in biofilm matrix production. Global c-di-GMP levels were unaffected by spermine supplementation, suggesting that biofilm formation may be regulated by variations in local rather than global c-di-GMP pools. Finally, we propose a model illustrating how the NspS-MbaA signaling system may communicate exogenous polyamine content to the cell to control biofilm formation in the aquatic environment and within the human intestine.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据