3.8 Proceedings Paper

Moisture sources and synoptic conditions of summer precipitation in the glacial zone of the East Sayan Range

期刊

ADVANCES IN SCIENCE AND RESEARCH
卷 17, 期 -, 页码 1-8

出版社

COPERNICUS GESELLSCHAFT MBH
DOI: 10.5194/asr-17-1-2020

关键词

-

资金

  1. Russian Foundation for Basic Research [19-05-00668]

向作者/读者索取更多资源

Precipitation in high-mountain regions is characterized by a strong heterogeneity due to complex interaction between atmospheric circulation and steep topography, however, extremely rare network of high elevation stations hampers the adequate high resolution regional climate modeling. In this study we present new data of precipitation directly measured in high-mountain catchment, on the continental glacier (East Sayan Range, south of East Siberia) during the summer periods of 2015-2017 using automatic weather station. The precipitation record was compared with near located weather stations and ERA Interim and NCEP/NCAR reanalysis data. Precipitation mode similar to the glacier site was found at the stations located west and northwest, while ERA Interim and NCEP/NCAR reanalysis data underestimated the precipitation by 40% and 70 %, respectively. Atmospheric circulation patterns in days with precipitation were analyzed by using mean sea level pressure, geopotential height at 700 and 500 hPa and classification of macro scale atmospheric processes of the Northern Hemisphere by Dzerdzeevskii. Summer precipitation was mostly associated with meridional southern group of large scale circulation the Northern Hemisphere, while at synoptic scale it basically fell in cyclonic (49% of precipitation) and low-gradient cyclonic (30 %) baric fields. Six typical atmospheric circulation patterns over the East Sayan were identified for days with precipitation. The sources and atmospheric moisture transfer to the glacier was defined by using the HYSPLIT trajectory model. The most of summer precipitation (70 %) was related with western cyclones, while about 25% of rainfalls (mainly of moderate to strong intensity) was originated from the south-east (Pacific monsoon influence).

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

3.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据