4.8 Article

Dynamic and Programmable Cellular-Scale Granules Enable Tissue-like Materials

期刊

MATTER
卷 2, 期 4, 页码 948-964

出版社

CELL PRESS
DOI: 10.1016/j.matt.2020.01.008

关键词

-

资金

  1. US Office of Naval Research (ONR YIP) [N000141612530]
  2. US Office of Naval Research (ONR PECASE) [N000141612958]
  3. National Science Foundation (NSF MRSEC) [DMR 1420709]
  4. Soft and Hybrid Nanotechnology Experimental Resource [NSF ECCS-1542205]
  5. Materials Research Science and Engineering Centers (MRSEC) program at the Materials Research Center [NSF DMR-1720139]
  6. International Institute for Nanotechnology (IIN)
  7. State of Illinois, through the IIN
  8. Major Research Instrumentation program [NSF DMR1229693]
  9. DOE Office of Science [DE-AC02-06CH11357, DE-AC02-98CH10886]
  10. U.S. Department of Defense (DOD) [N000141612530, N000141612958] Funding Source: U.S. Department of Defense (DOD)

向作者/读者索取更多资源

Living tissues are an integrated, multiscale architecture consisting of dense cellular ensembles and extracellular matrices (ECMs). The cells and ECMs cooperate to enable specialized mechanical properties and dynamic responsiveness. However, the mechanical properties of living tissues are difficult to replicate. A particular challenge is identification of a cell-like synthetic component, which is tightly integrated with its matrix and also responsive to external stimuli. Here, we demonstrate that cellular-scale hydrated starch granules, an underexplored component in materials science, can turn conventional hydrogels into tissue-like materials when composites are formed, By using several synchrotron-based X-ray techniques, we reveal the mechanically induced organization and training dynamics of the starch granules in the hydrogel matrix. These dynamic behaviors enable multiple tissue-like properties such as programmability, anisotropy, strain-stiffening, mechanochemistry, and self-healability.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.8
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据