4.5 Article

Mechanisms of toxicity associated with six tyrosine kinase inhibitors in human hepatocyte cell lines

期刊

JOURNAL OF APPLIED TOXICOLOGY
卷 38, 期 3, 页码 418-431

出版社

WILEY
DOI: 10.1002/jat.3551

关键词

apoptosis; glycolysis; hepatocellular toxicity; mitochondrial toxicity; reactive oxygen species; Tyrosine kinase inhibitor

资金

  1. Swiss National Science foundation [SNF 31003A_156270]

向作者/读者索取更多资源

Tyrosine kinase inhibitors have revolutionized the treatment of certain cancers. They are usually well tolerated, but can cause adverse reactions including liver injury. Currently, mechanisms of hepatotoxicity associated with tyrosine kinase inhibitors are only partially clarified. We therefore aimed at investigating the toxicity of regorafenib, sorafenib, ponatinib, crizotinib, dasatinib and pazopanib on HepG2 and partially on HepaRG cells. Regorafenib and sorafenib strongly inhibited oxidative metabolism (measured by the Seahorse-XF24 analyzer) and glycolysis, decreased the mitochondrial membrane potential and induced apoptosis and/or necrosis of HepG2 cells at concentrations similar to steady-state plasma concentrations in humans. In HepaRG cells, pretreatment with rifampicin decreased membrane toxicity (measured as adenylate kinase release) and dissipation of adenosine triphosphate stores, indicating that toxicity was associated mainly with the parent drugs. Ponatinib strongly impaired oxidative metabolism but only weakly glycolysis, and induced apoptosis of HepG2 cells at concentrations higher than steady-state plasma concentrations in humans. Crizotinib and dasatinib did not significantly affect mitochondrial functions and inhibited glycolysis only weakly, but induced apoptosis of HepG2 cells. Pazopanib was associated with a weak increase in mitochondrial reactive oxygen species accumulation and inhibition of glycolysis without being cytotoxic. In conclusion, regorafenib and sorafenib are strong mitochondrial toxicants and inhibitors of glycolysis at clinically relevant concentrations. Ponatinib affects mitochondria and glycolysis at higher concentrations than reached in plasma (but possibly in liver), whereas crizotinib, dasatinib and pazopanib showed no relevant toxicity. Mitochondrial toxicity and inhibition of glycolysis most likely explain hepatotoxicity associated with regorafenib, sorafenib and possibly pazopanib, but not for the other compounds investigated.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据