4.7 Article

Variable Accretion onto Protoplanet Host Star PDS 70

期刊

ASTROPHYSICAL JOURNAL
卷 892, 期 2, 页码 -

出版社

IOP PUBLISHING LTD
DOI: 10.3847/1538-4357/ab77c1

关键词

-

资金

  1. NASA [NNX17AE57G, NAS 5-26555]
  2. program UNAM-DGAPA-PAPIIT grant [IA102319]
  3. NASA Explorer Program

向作者/读者索取更多资源

The PDS 70 system has been subject to many studies in the past year following the discovery of two accreting planets in the gap of its circumstellar disk. Nevertheless, the mass accretion rate onto the star is still not well known. Here, we determined the stellar mass accretion rate and its variability based on Transiting Exoplanet Survey Satellite and High-Accuracy Radial velocity Planetary Searcher (HARPS) observations. The stellar light curve shows a strong signal with a 3.03 0.06 days period, which we attribute to stellar rotation. Our analysis of the HARPS spectra shows a rotational velocity of indicating that the inclination of the rotation axis is 50 degrees 8 degrees. This implies that the rotation axes of the star and its circumstellar disk are parallel within the measurement error. We apply magnetospheric accretion models to fit the profiles of the H alpha line and derive mass accretion rates onto the star in the range of varying over the rotation phase. The measured accretion rates are in agreement with those estimated from near-UV fluxes using accretion shock models. The derived accretion rates are higher than expected from the disk mass and planets' properties for the low values of the viscous parameter alpha suggested by recent studies, potentially pointing to an additional mass reservoir in the inner disk to feed the accretion, such as a dead zone. We find that the He I lambda 10830 line shows a blueshifted absorption feature, indicative of a wind. The mass-loss rate estimated from the line depth is consistent with an accretion-driven inner disk MHD wind.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据