4.5 Article

Sex differences in sympathetic vasoconstrictor responsiveness and sympatholysis

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 123, 期 1, 页码 128-135

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00139.2017

关键词

blood flow; exercise; skeletal muscle; vasoconstriction; nitric oxide

资金

  1. Natural Sciences and Engineering Research Council of Canada
  2. Canadian Foundation for Innovation
  3. Alberta Advanced Education and Technology

向作者/读者索取更多资源

Sex differences in the neurovascular control of blood pressure and vascular resistance have been reported. However, the mechanisms underlying the modulatory influence of sex have not been fully elucidated. Nitric oxide (NO) has been shown to inhibit sympathetic vasoconstriction in resting and contracting skeletal muscle, and estrogen modulates NO synthase (NOS) expression and NO bioavailability. Therefore NO-mediated inhibition of sympathetic vasoconstriction may be enhanced in females. Thus the purpose of the present study was to investigate the hypothesis that sympathetic vasoconstrictor responsiveness would be blunted and NO-mediated inhibition of sympathetic vasoconstriction would be enhanced in females compared with males. Male (M; n = 8) and female (F; n = 10) Sprague-Dawley rats were anesthetized and surgically instrumented for measurement of arterial blood pressure and femoral artery blood flow and stimulation of the lumbar sympathetic chain. The percentage change of femoral vascular conductance in response to sympathetic chain stimulation delivered at 2 and 5 Hz was determined at rest and during triceps surae muscle contraction before (control) and after NOS blockade [N-omega-nitro-L-arginine methyl ester (L-NAME), 10 mg/kg iv]. At rest, sympathetic vasoconstrictor responsiveness was augmented (P < 0.05) in female compared with male rats at 2 Hz [F: -33 +/- 8% (SD); M: -26 +/- 6%] but was not different at 5 Hz (F: -55 +/- 7%; M: -47 +/- 7%). During muscle contraction, evoked vasoconstriction was similar (P < 0.05) in females and males at 2 Hz (F: -12 +/- 5%; M: -13 +/- 5%) but was blunted (P < 0.05) in females compared with males at 5 Hz (F: -24 +/- 5%; M: -34 +/- 8%). L-NAME increased (P < 0.05) sympathetic vasoconstrictor responsiveness in both groups at rest and during contraction. Contraction-mediated inhibition of vasoconstriction (sympatholysis) was enhanced (P < 0.05) in females compared with males; however, sympatholysis was not different (P < 0.05) between males and females in the presence of NOS blockade, indicating that NO-mediated sympatholysis was augmented in female rats. These data suggest that sex modulates sympathetic vascular control in resting and contracting skeletal muscle and that a portion of the enhanced sympatholysis in female rats was NO dependent. NEW & NOTEWORTHY Sex differences in the neurovascular regulation of blood pressure and vascular resistance have been documented. However, our understanding of the underlying mechanisms that mediate these differences is incomplete. The present study demonstrates that female rats have an enhanced capacity to inhibit sympathetic vasoconstriction during exercise (sympatholysis) and that NO mediates a portion of the enhanced sympatholysis.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据