4.6 Article

A Hybrid Genetic Algorithm Based on Information Entropy and Game Theory

期刊

IEEE ACCESS
卷 8, 期 -, 页码 36602-36611

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/ACCESS.2020.2971060

关键词

Genetics; Optimization; Genetic algorithm; partheno-genetic algorithm; information entropy; game theory; parallel genetic

向作者/读者索取更多资源

To overcome the disadvantages of traditional genetic algorithms, which easily fall to local optima, this paper proposes a hybrid genetic algorithm based on information entropy and game theory. First, a calculation of the species diversity of the initial population is conducted according to the information entropy by combining parallel genetic algorithms, including using the standard genetic algorithm (SGA), partial genetic algorithm (PGA) and syncretic hybrid genetic algorithm based on both SGA and PGA for evolutionary operations. Furthermore, with parallel nodes, complete-information game operations are implemented to achieve an optimum for the entire population based on the values of both the information entropy and the fitness of each subgroup population. Additionally, the Rosenbrock, Rastrigin and Schaffer functions are introduced to analyse the performance of different algorithms. The results show that compared with traditional genetic algorithms, the proposed algorithm performs better, with higher optimization ability, solution accuracy, and stability and a superior convergence rate.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据