4.5 Article

Oxidative phosphorylation: unique regulatory mechanism and role in metabolic homeostasis

期刊

JOURNAL OF APPLIED PHYSIOLOGY
卷 122, 期 3, 页码 611-619

出版社

AMER PHYSIOLOGICAL SOC
DOI: 10.1152/japplphysiol.00715.2016

关键词

energy metabolism; metabolic homeostasis; metabolic control; oxygen consumption; exercise; respiration

向作者/读者索取更多资源

Oxidative phosphorylation is the primary source of metabolic energy, in the form of ATP, in higher plants and animals, but its regulation in vivo is not well understood. A model has been developed for oxidative phosphorylation in vivo that predicts behavior patterns that are both distinctive and consistent with experimental measurements of metabolism in intact cells and tissues. A major regulatory parameter is the energy state ([ATP]/[ADP][P-i], where brackets denote concentration). Under physiological conditions, the [ATP] and [P-i] are similar to 100 times that of [ADP], and most of the change in energy state is through change in [ADP]. The rate of oxidative phosphorylation (y-axis) increases slowly with increasing [ADP] until a threshold is reached and then increases very rapidly and linearly with further increase in [ADP]. The dependence on [ADP] can be characterized by a threshold [ADP] (T) and control strength (CS), the normalized slope above threshold (Delta y/(Delta x/T). For normoxic cells without creatine kinase, T is similar to 30 mu M and CS is similar to 10 s(-1). Myocytes and cells with larger ranges of rates of ATP utilization, however, have the same [ADP]- and [AMP]-dependent mechanisms regulating metabolism and gene expression. To compensate, these cells have creatine kinase, and hydrolysis/synthesis of creatine phosphate increases the change in [P-i] and thereby CS. Cells with creatine kinase have [ADP] and [AMP], which are similar to cells without creatine kinase, despite the large differences in metabolic rate. P-31 measurements in human muscles during work-to-rest and rest-to-work transitions are consistent with predictions of the model.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.5
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据