4.6 Article

Giant-spin nonlinear response theory of magnetic nanoparticle hyperthermia: A field dependence study

期刊

JOURNAL OF APPLIED PHYSICS
卷 121, 期 17, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.4982357

关键词

-

向作者/读者索取更多资源

Understanding high-field amplitude electromagnetic heat loss phenomena is of great importance, in particular, in the biomedical field, because the heat-delivery treatment plans might rely on analytical models that are only valid at low field amplitudes. Here, we develop a nonlinear response model valid for single-domain nanoparticles of larger particle sizes and higher field amplitudes in comparison to the linear response theory. A nonlinear magnetization expression and a generalized heat loss power equation are obtained and compared with the exact solution of the stochastic Landau-Lifshitz-Gilbert equation assuming the giant-spin hypothesis. The model is valid within the hyperthermia therapeutic window and predicts a shift of optimum particle size and distinct heat loss field amplitude exponents, which is often obtained experimentally using a phenomenological allometric function. Experimental hyperthermia data with distinct ferrite-based nanoparticles and third harmonic magnetization data support the nonlinear model, which also has implications for magnetic particle imaging and magnetic thermometry. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据