4.6 Article

Probing phonon-surface interaction by wave-packet simulation: Effect of roughness and morphology

期刊

JOURNAL OF APPLIED PHYSICS
卷 122, 期 15, 页码 -

出版社

AMER INST PHYSICS
DOI: 10.1063/1.5008367

关键词

-

资金

  1. National Natural Science Foundation of China [51676121]

向作者/读者索取更多资源

One way to reduce the lattice thermal conductivity of solids is to induce additional phonon-surface scattering through nanostructures. However, the way in which phonons interact with surfaces, especially at the atomic level, is not well understood at present. In this work, we perform two-dimensional atomistic wave-packet simulations to investigate angular-resolved phonon reflection at a surface. Different surface morphologies, including smooth surfaces, periodically rough surfaces, and surfaces with amorphous coatings, are considered. For a smooth surface, mode conversion can occur after reflection, with the resulting wave-packet energy distribution depending on the surface condition and the polarization of the incident phonon. At a periodically rough surface, the reflected wave-packet distribution does not follow the well-known Ziman model but shows a nonmonotonic dependence on the depth of the surface roughness. When an amorphous layer is attached to a smooth surface, the incident wave packet is absorbed by the amorphous region and is then reflected diffusively at the surface. Our results show that the commonly adopted specular-diffusive model is insufficient to describe phonon reflection at a periodically rough surface and that an amorphous layer can induce strong diffusive reflection. This work provides a comprehensive analysis of phonon reflection at different types of surfaces, which is important for better understanding of thermal transport in various nanostructures. Published by AIP Publishing.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据