4.6 Article

DeepGait: Planning and Control of Quadrupedal Gaits Using Deep Reinforcement Learning

期刊

IEEE ROBOTICS AND AUTOMATION LETTERS
卷 5, 期 2, 页码 3699-3706

出版社

IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
DOI: 10.1109/LRA.2020.2979660

关键词

Planning; Foot; Legged locomotion; Optimization; Machine learning; Dynamics; Legged robots; deep learning in robotics and automation; motion and path planning

类别

资金

  1. Intel Labs
  2. Swiss National Science Foundation (SNSF) [166232, 188596]
  3. National Centre of Competence in Research Robotics (NCCR Robotics)
  4. European Union's Horizon 2020 research and innovation program [780883]
  5. ANYmal Research, a community to advance legged robotics

向作者/读者索取更多资源

This letter addresses the problem of legged locomotion in non-flat terrain. As legged robots such as quadrupeds are to be deployed in terrains with geometries which are difficult to model and predict, the need arises to equip them with the capability to generalize well to unforeseen situations. In this work, we propose a novel technique for training neural-network policies for terrain-aware locomotion, which combines state-of-the-art methods for model-based motion planning and reinforcement learning. Our approach is centered on formulating Markov decision processes using the evaluation of dynamic feasibility criteria in place of physical simulation. We thus employ policy-gradient methods to independently train policies which respectively plan and execute foothold and base motions in 3D environments using both proprioceptive and exteroceptive measurements. We apply our method within a challenging suite of simulated terrain scenarios which contain features such as narrow bridges, gaps and stepping-stones, and train policies which succeed in locomoting effectively in all cases.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据