4.7 Article

Ecosystem water use efficiency for a sparse vineyard in arid northwest China

期刊

AGRICULTURAL WATER MANAGEMENT
卷 148, 期 -, 页码 24-33

出版社

ELSEVIER
DOI: 10.1016/j.agwat.2014.08.011

关键词

Carbon dioxide flux; Evapotranspiration; Sparse vegetation; Vineyard; Water use efficiency

资金

  1. Chinese National Natural Science Fund [51321001, 51379206, 51009137]
  2. National High Tech Research Plan [2011AA100502]
  3. 111Project - Ministry of Education of the People's Republic of China [B14002]

向作者/读者索取更多资源

Ecosystem water use efficiency (WUE) can be defined as the ratio of net CO2 exchange to evapotranspiration, which implicates the interactions between carbon sequestration and water consumption. Previous studies mainly focused on ecosystem WUE for forests, grasslands and farmlands, but paid little attention to the sparse vineyard. How the vineyard WUE varied on daily and seasonal time scales remains uncertain. The vineyard CO2 and water fluxes were measured by the eddy covariance method during 2008 in arid northwest China to address the issues. Results indicate that the seasonal variation of vineyard WUE presented a downward-parabolic trend, with a mean value of 4 mg g(-1) and a maximum value of 10 mg g(-1), Compared with other ecosystems, WUE for vineyard was lower than that for forests, maize, wheat and wetlands, but higher than grasslands and Savannas. The severely dry climate and the sparse vegetation led the results. Such factors as radiation, air temperature and humidity, soil moisture, canopy conductance and leaf area index all exerted significant influences on vineyard WUE. However, the vineyard WUE was highly sensitive to solar radiation and air temperature changes, and it decreased significantly with the rising radiation and temperature, which is remarkably different from previous studies. Such results were mainly due to the great impact on CO2 exchange exerted by soil layer in the sparse vineyard, and the high sensitivity of soil respiration to temperature changes induced by radiation and air temperature. The CO2 assimilation reduced with the increasing radiation and air temperature, however the vineyard evapotranspiration increased rapidly, thus the vineyard WUE declined significantly with the rising radiation and air temperature. These results provided a new insight for understanding the carbon and water cycles over the sparse vegetation. (C) 2014 Elsevier B.V. All rights reserved.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.7
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据