4.4 Article

The impact of [1,2,5]chalcogenazolo[3,4-f]-benzo[1,2,3]triazole structure on the optoelectronic properties of conjugated polymers

期刊

JOURNAL OF POLYMER SCIENCE
卷 58, 期 7, 页码 956-968

出版社

WILEY
DOI: 10.1002/pol.20190275

关键词

benzo[1; 2-b; 4; 5-b ']dithiophene; benzotriazole; chalcogen; conjugated polymers; electrochromism

向作者/读者索取更多资源

Two novel conjugated near-infrared (NIR) absorbing donor-acceptor type copolymers comprising benzodithiophene as the donor and [1,2,5]chalcogenazolo[3,4-f]-benzo[1,2,3]triazole derivatives as the acceptors, spaced with thiophene as the pi-bridge, were designed and synthesized via Stille polycondensation reaction. The effect of acceptor strength on optoelectronic properties was targeted and investigated. Branched alkyl chains (the extended 2-octyl-1-dodecyl alkyl chain; -C8C12) were introduced to 5H-[1,2,3]triazolo[4 ',5 ':4,5]benzo[1,2-c][1,2,5]thiadiazole and 5H-[1,2,3]triazolo[4 ',5 ':4,5]benzo[1,2-c][1,2,5]selenadiazole for enhanced solubility of polymers which ease the processability hence device constructions. The strongly electron-withdrawing units lead to a substantial change in the absorption properties via promotion of the intramolecular charge transfer band alongside the pi-pi* transition. The resultant soluble polymers were characterized via cyclic voltammetry to determine highest occupied molecular orbital and lowest unoccupied molecular orbital energy levels as -5.00 and -3.92 eV for PSBT and -4.86 and -4.04 eV for PSeBT, respectively. Electronic band gaps of the copolymers were calculated as 1.08 eV for PSBT and 0.82 eV for PSeBT, respectively. NIR absorbing copolymers were used to construct electrochromic devices.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.4
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据