4.6 Article

Highly selective oxidation of glucose to gluconic acid and glucaric acid in water catalyzed by an efficient synergistic photocatalytic system

期刊

CATALYSIS SCIENCE & TECHNOLOGY
卷 10, 期 7, 页码 2231-2241

出版社

ROYAL SOC CHEMISTRY
DOI: 10.1039/c9cy02393c

关键词

-

资金

  1. National Natural Science Foundation of China [21772237]
  2. Natural Science Foundation of Hubei Province [2018CFB494]

向作者/读者索取更多资源

Selective oxidation of glucose into gluconic acid and glucaric acid with molecular oxygen under mild conditions in only water as the solvent remains a challenge. To achieve highly selective oxidation of glucose to gluconic acid and glucaric acid, a new TiO2/HPW/CoPz composite photocatalyst was prepared through modifying TiO2 with HPW (phosphotungstic acid) and CoPz (cobalt tetra(2-hydroxymethyl-1,4-dithiin)porphyrazine), which was well characterized by Raman spectroscopy, X-ray diffraction (XRD), UV-vis diffuse reflectance spectroscopy (UV-vis DRS), inductively coupled plasma-mass spectrometry (ICP-MS) and scanning electron microscopy energy-dispersive spectrometry (SEM-EDS). Remarkably, it was found that this composite photocatalyst can efficiently catalyze oxidation of glucose to gluconic acid and glucaric acid with atmospheric oxygen at high selectivity in water under simulated sunlight irradiation. For example, the total selectivity for both acids can reach up to 80.4% with 22.2% glucose conversion under the optimized conditions. The excellent photocatalytic performance of the TiO2/HPW/CoPz composite was attributed to the synergistic effect between the components. To elucidate the roles of HPW and CoPz in the photocatalytic process, a series of experiments including surface photocurrent, electrochemical impedance, electron spin resonance (ESR) spectroscopy, zeta potential and adsorption behavior measurements were performed. It has been demonstrated that the presence of HPW can effectively reduce the adsorption capacity of gluconic acid and glucaric acid on the surface of the catalyst and suppress their further oxidation, resulting in a high selectivity to both acids. Meanwhile the presence of CoPz can improve the separation efficiency of photogenerated charges and accelerate the production of active species, facilitating the conversion of glucose without sacrificing the acid selectivity.

作者

我是这篇论文的作者
点击您的名字以认领此论文并将其添加到您的个人资料中。

评论

主要评分

4.6
评分不足

次要评分

新颖性
-
重要性
-
科学严谨性
-
评价这篇论文

推荐

暂无数据
暂无数据